Impurities and the Thermal Components of Flow Stress in BCC Metals: A Discussion on the Letter "A Method for Determining The Thermal and Athermal Components of Flow Stress from Stress-Relaxation" by P. Rodriguez (J. Materials Sci. 3 (1968) 98)

Conrad [2, 3] splits the flow stress into its thermal and athermal components in the manner shown in fig. 1

$$\tau = \tau^* \left(T, \dot{\gamma} \right) + \tau_{\mu}$$

In accordance with this view, the thermal component vanishes when

$$\frac{\mathrm{d}\tau}{\mathrm{d}T} = \frac{\tau}{\mu} \frac{\mathrm{d}\mu}{\mathrm{d}T}$$

i.e., when the temperature dependence of τ is determined only by the temperature dependence of the shear modulus μ .

In our investigations on polycrystalline tantalum [4] we found, within a medium temperature range, an increase in tensile strength and strain hardening rate which is due to the interaction, typical for the body-centered cubic metals, between interstitial solutes and migrating dislocation lines. The temperature dependence of the lower yield strength in the

Figure 1 Variation of thermal and athermal components of flow stress with temperature and strain rate, according to Conrad [3].

same temperature range also shows such an increase (fig. 2); here again, it is a case of dislocation blocking by impurity atoms during microstrain. The cause for the two successive maxima is the effect of different types of atoms; calculation has shown that oxygen (content ~ 30 ppm) is responsible for the first increase and carbon (~ 60 ppm) and nitrogen (~ 40 ppm) for the second. The position of the maxima as a function of strain rate is in agreement with the calculation results, too [4].

Fig. 3a shows schematically how in tensile tests of normal strain rates the flow stress is increased by an additional component

Figure 2 Lower yield strength versus temperature for recrystallised tantalum, tested at various strain rates. 450

$$\tau = \tau^* \left(T, \dot{\gamma} \right) + \tau_j^* \left(T, \dot{\gamma} \right) + \tau \mu.$$

 τ_j^* , caused by impurities, must be considered as a thermally activated quantity since the temperature and strain rate dependence (figs. 2 and 3b) applies to it as it does for τ^* (fig. 1).

Figure 3 Additional component of flow stress due to impurity atoms (a), and its strain rate dependence (b).

In the work [2] the agreement between the T_0 values for various metals amounting to about 0.20 to 0.25 $T_{\rm M}$ is stressed: as the flattening of the stress-temperature curve is explained by the disappearance of the thermal component τ^* , the value for T_0 is the same as that for the onset of impurity effects (table I). The values of τ^*

 TABLE I To according to Conrad [2] and onset of impurity effects.

Metal	Τ ₀ (τ* – (° C)	> 0) <i>T</i> m	Tempera starting i effect	iture range of impurity
			° C	Reference
Fe	77	0.190	0-100	5
Nb	207	0.1750	50-240	5
Та	287	0.180	300	4
Мо	400	0.230	400	4

and τ_{μ} thus obtained should consequently be too low and too high, respectively, because the effect of the impurity atoms has not been taken into account.

Rodriguez [1] used a relaxation method for the determination of the thermally activated proportion. The values for σ^* thus found are indeed always larger than those measured by the conventional method; in particular, T_0 appears to be shifted towards higher temperatures (the further trend has not been indicated). In our relaxation tests on tantalum we found above 200° C, where the other mechanical properties are also increased, a maximum of σ^* (table II),

TABLE II σ^* (true stresses) for tantalum as determined by stress relaxation (strained 10%, relaxation time 30 min).

Test temperature (° C)	*σ kg/mm²	
100	9.1	
200	3.3	
300	7.1	
350	6	
400	(2.3) ageing	

situated approximately at the temperature T_0 as given in [2]. Above 400° C, owing to ageing effects, the real relaxation is no longer detectable. Relaxation results from high temperature tests [6], by the way, show the difficulty involved in obtaining an unequivocal correlation between τ^* and the results from the stress-relaxation method.

Acknowledgement

This work was sponsored by the Bundesministerium für Handel, Gewerbe und Industrie, Vienna.

References

- 1. P. RODRIGUEZ, J. Materials Sci. 3 (1968) 98.
- 2. H. CONRAD and W. HAYES, Trans. ASM 56 (1963) 125.
- 3. Idem, J. Metals 16 (1964) 582.
- 4. E. PINK, Planseeber Pulvermetallurgie 14 (1966) 165.
- 5. B. F. DYSON, R. B. JONES, and W. J. MCG. TEGART, J. Inst. Metals 87 (1958) 340.
- 6. E. PINK, to be published.

21 March 1968

ERWIN PINK Metallwerk Plansee A.G. Reutte, Tirol, Austria 451